6.1 Capacitors

Mark scheme - Capacitors

6.1 Capacitors

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
Examiner's Comments \\
Some candidates obtained \(Q=E C_{0}\) by applying the definition of capacitance at A, but then did not realise that charge would be conserved on switching from A to B. Some chose the wrong formula for capacitors in parallel or attempted to use the potential divider equation.
\end{tabular} \\
\hline b \& \(1 / V=1 / E+C / E C_{0}\) (and compare to \(y=c+m x)\) \& B1 \& \begin{tabular}{l}
Mark is for rearrangement into linear equation \\
Examiner's Comments \\
Some candidates correctly took the reciprocal of both sides of the given equation but were then unable to show a rearrangement into the standard linear form. A common difficulty was an inability to expand the bracket in \(\frac{1}{E} \times \frac{\left(C+C_{0}\right)}{C_{0}}\) to give \(\frac{C}{E C_{0}}+\frac{C_{0}}{E C_{0}}\)
\end{tabular} \\
\hline \& \[
\begin{array}{l|l}
\text { ii } \& \begin{array}{l}
1 / E C_{0}=51=1 /\left(9.1 C_{0}\right) \\
\text { giving } C_{0}=1 /(51 \times 9.1) \mathrm{F} \\
C_{0}=2.2(\mathrm{mF})
\end{array}
\end{array}
\] \& B1
B1 \& \begin{tabular}{l}
\[
C_{0}=2.1547 \times 10^{-3} \mathrm{~F}
\] \\
Answer must be correct, rounded correctly and given in mF \\
Candidate's answer must be given to 2 SF \\
Examiner's Comments \\
Some candidates gave their response to 2 d.p. instead of to 2 s.f. as required.
\end{tabular} \\
\hline \& \begin{tabular}{l}
(at least) one correct worst fit line drawn \\
gradient calculated correctly using a large triangle \\
uncertainty \(=C_{0}-1 /(\) wfl gradient x 9.1) \\
uncertainty given is to the same number of decimal places as \(C_{0}\)
\end{tabular} \& B1
B1
B1

B1 \& | Top and bottom points chosen must be from opposite extremes of uncertainty limits, accurate to within half a small square |
| :--- |
| $\Delta x \geq 1.5 \times 10^{-3}$; expect 59 ± 1 or 44 ± 1 (or 0.059 or 0.044); allow ECF from poorly drawn line; readings must be accurate to within half a small square |
| ECF from \mathbf{b} (ii); expect uncertainty of up to $0.4(\mathrm{mF})$ |
| ECF from \mathbf{b} (ii) |
| If no value for C_{0} given in b (ii), allow any answer given to 1 dp |
| Examiner's Comments |
| Most candidates gained the mark for using a large triangle (spanning more than 1.5 on the x -axis) to determine the gradient of the worst-fit line. Lower ability candidates were unable to gain credit for finding the gradient of their line because they read the scales on the axes incorrectly. Candidates should take a ruler into the examination and be careful about the positioning of the ruler for drawing a worst-fit straight line. A worst-fit line should join opposite extremes of uncertainty limits and pass between all the uncertainty limits. The Practical Skills Handbook is helpful on this topic. |
| Several candidates performed the unnecessary step of calculating the fractional (or percentage) uncertainty instead of using $\Delta C_{0}= \pm \mid C_{0}$ best $-C_{0}$ worst \mid directly. |

\hline c \& Only effect is to slow the charging and / or discharging (of capacitor(s)) and so the final charges are \& B1 \& Allow and so the experiment takes longer

\hline
\end{tabular}

6.1 Capacitors

6.1 Capacitors

				Exemplar 3 The answer calculated here of 0.2 V , is the potential difference across the resistor and not the capacitor. This candidate was one step away from getting the correct answer - this value just had to be subtracted from the e.m.f. of 1.50 V. Deciphering the question is vital, as is the analysis that follows.
		Total	1	
7		B	1	
		Total	1	
8		D	1	
		Total	1	
9		D	1	
		Total	1	
$\begin{aligned} & 1 \\ & 0 \end{aligned}$		A	1	
		Total	1	
1		A	1	
		Total	1	
$\begin{aligned} & 1 \\ & 2 \end{aligned}$		B	1	
		Total	1	
$\begin{aligned} & 1 \\ & 3 \end{aligned}$		A	1	Examiner's Comments All the key equations for capacitor-resistor circuits are in the Data, Formulae and Relationship Booklet. As the capacitor charges, the potential difference V across the resistor will fall exponentially with respect to time. The time constant of the circuit $C R$ is 10 s . Therefore, according to the equation $V=V_{0} \mathrm{e}^{-t / C R}$, the correct expression after substitution will be $0.60=1.50 \mathrm{e}^{-0.10 t}$. The correct answer is \mathbf{A}. Just on the knowledge of time constant, neither \mathbf{C} nor \mathbf{D} can be the correct answers because of the ' 10 ' in the expression. The choice then is between \mathbf{A} and \mathbf{B}; as demonstrated above, \mathbf{A} is the answer. All the distractors were equally popular.
		Total	1	

6.1 Capacitors

1 4			A	1	
			Total	1	
1	a		Take \ln to give $\ln V=-(t /$ C). $1 / R+\ln V_{0}$ gradient $(\mathrm{m})=(-) t / C$ where $t=15$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	allow $\ln \left(V / V_{0}\right)=-(t / C) .1 / R$ Examiner's Comments The whole question produced a full range of marks and discriminated well. About 70\% gained more than half marks. In (a) here was some confusion about V_{0}. Many candidates correctly stated that $\ln \left(V / V_{0}\right)=-t / R C$ but some looked again at the question and wrote $\ln (\mathrm{V} / \mathrm{V})$ instead not realising that V here related to the unit volt. A smaller number correctly stated the expanded form $\ln V=-t / R C+\ln V_{0}$.
	b	i	1.10 ± 0.07	B1	value plus uncertainty required for the mark
		ii	two points plotted correctly to within $1 / 2$ small square on x-axis; line of best fit	B1 B1	ignore accuracy of length of error bar; ecf bi value or both worst acceptable lines drawn
		iii	$\begin{aligned} & \text { gradient }(=15 / C)=6.6(\times \\ & \left.10^{4}\right) ; \\ & C=15 / 6.6 \times 10^{4}=2.3 \times \\ & 10^{-4}(\mathrm{~F}) \end{aligned}$ worst acceptable straight line drawn $\text { (C) } \pm 0.3 \times 10^{-4} \mathrm{~F}$	C1 A1 B1 B1	accept 6.4 to 6.8 ignore power of 10 accept $2.3 \pm 0.1 \times 10^{-4}$ allow ecf for the point calculated incorrectly in b(ii); steepest or shallowest possible line that passes through all the error bars; should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar allow e.g. (C) $\pm 0.2 \times 10^{-4}$; allow value of C to 4 SF but N.B. the uncertainty and the value of C must be to the same number of decimal places allow $230 \pm 30 \mu \mathrm{~F}$ etc allow equivalent unit including $s \Omega^{-1}, \mathrm{CV}^{-1}, \mathrm{As}^{-1}$ Examiner's Comments Candidates were given several opportunities to score marks by plotting points, drawing the best and worst lines on a graph and then extracting data from the graph. Many failed to draw the worst straight line losing themselves two possible marks. Many forgot the power of 10^{-6} in the unit on the x-axis. The normal requirement that the final value for the capacitance C should to be given to 2 significant figures (SF) and the absolute uncertainty to 1 SF (e.g. $230 \pm 0.20 \mu \mathrm{~F}$) was waived. However the absolute uncertainty had to be stated to the same number of decimal places as the calculated value of C to gain the mark.
	c		$\begin{aligned} & \ln (0.1)=-15 / R C \text { or } R= \\ & -15 / C \ln (0.1) \text { or } \\ & R=0.65 / C \\ & R=0.65 / 2.3 \times 10^{-4} \text { giving } \\ & R=28 \mathrm{k} \Omega \end{aligned}$	C1 A1	$\ln (0.1)=-2.30$ ecf (b)(iii) Examiner's Comments About half of the candidates gained full marks here. Some confused 10% and 90% and about a tenth of the candidates did not attempt an answer.
			Total	11	
			Electrons in the circuit move in a clockwise	B1	Allow: conventional current is in anticlockwise direction.

6.1 Capacitors

		direction and electrons are deposited on plate B. (An equal number of) electrons are removed from plate \mathbf{A} giving it a positive charge (of equal magnitude).	B1	
		Total	2	
$\begin{aligned} & 1 \\ & 7 \end{aligned}$		Flemings left hand rule / the force on the electron is in the plane of the paper, right angles to the velocity and 'downwards'. Circular path within field in a clockwise direction.	B1 B1	Note: If drawn on Fig. 22.1, then judge 'circular' path by eye.
		Total	2	
$\begin{aligned} & 1 \\ & 8 \end{aligned}$		$\begin{aligned} & \left(V=V_{0} \mathrm{e}^{-t / C R}\right) \ln \left(V / V_{0}\right)=- \\ & t / C R \text { or } \ln V=\ln V_{0}-t / \\ & C R \\ & \ln V=\ln V_{0}-t / C R \text { and } y= \\ & m x+c / \text { gradient }=-1 / C R \end{aligned}$	B1 B1	Note the minus sign is necessary Examiner's Comments This question was successfully tackled by the high-scoring candidates, many of whom effortlessly derived the correct expression $\ln V=\ln V_{0}-t / C R$ and demonstrated clearly how the equation of a straight line made the gradient equal to $-1 / C R$. The most common errors made by candidates were: - Using the wrong expression $V=V_{0}\left(1-\mathrm{e}^{-t / C R}\right)$ - Writing the equation as $\ln \left(V / V_{0}\right)=-t / C R$ and comparing this with $y=$ $m x$, with $y=\ln \left(V / V_{0}\right)$ and $x=t$. - Calculating the gradient of the line to be about -85 ; which proved to be helpful in the LoR question 22(b).
		Total	2	
$\begin{aligned} & 1 \\ & 9 \end{aligned}$		The charge on each plate remains the same. $C=\varepsilon_{0} A / d$, hence the capacitance is halved. $E=1 / 2 Q^{2} / C, E \propto 1 / C$ and hence energy stored doubles.	B1 B1 B1	Allow other correct methods.

6.1 Capacitors

6.1 Capacitors

a				

6.1 Capacitors

6.1 Capacitors

